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This is the same as one of the finite-difference equations used

by Taflove and Brodwin in [6] in their implementation of Yee’s

original formulation [7]. The remaining five equations can be

derived in a similar way. The two-dimensional method is a

simplification of the above, requiring modification of (9)-(11),

III. COMPARISONS BETWEEN TLM AND FINITE

DIFFERENCES

Great care has to be taken in comparing computer resources

for the TLM method with the finite-difference method since

much more information is available in the former. In the three-

dimensional TLM method operated in the above way, there are

three field quantities available at each shunt and series node,

This, for example, allows the boundary description for TLM to

be twice as fine as for finite differences. In two dimensions, if

boundaries are described only at nodes as in finite differences,

then incident pulses need only be at alternate nodes at any

instant. Thus, au average of two stores for link lines, not four, is

required at each node. Alternatively, if the pulses are incident

simultaneously at all nodes, then boundaries can efist halfway

between nodes as well as at nodes, and the boundary description

is again finer than in finite differences. Also, in assessing arith-

metical load, it should be recognized that implementation of (2)

and (3) requires much less work than a matrix multiplication.

Comparison of the algorithm is interesting, but often there is a

balance between computational efficiency and program or data

complexity. -A much more important difference between TLM

and finite difference is that the former is a physical model using

transmission lines, while the latter is a mathematical model using

differencing. The advantage of TLM is that it provides the

engineer with a conceptual model which can be simulated exactly

on a digital computer. The comparison should include the model-

ing philosophy and not just the algorithm details.

Another advantage of the TLM approach is that it can lead to

models and algorithms which cannot be readily expressed in

terms of the field quantities because the scattering matrix is not

easily factorized as in (3). Examples of this are the asymmetrical

condensed node or punctual node [8], [9] and the symmetrical

condensed node [10], which have the advantage of condensing all

six field quantities to one point in space.

In the author’s view, the TLM method and the finite difference

method complement each other rather than compete with each

other. Each leads to a better understanding of the other.
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Approximate Determination of the Characteristic
Impedance of the Coaxial System Consisting of

an Irregular Outer Conductor and a

Circular Inner Conductor

SHENG-GEN PAN

Abstract -Arr elementary forotofa is presented for the determination of

the characteristic impedance of a coaxial transmission line consisting of a

circufar inner conductor and an in’egtdar outer conductor. In this approach,

the irregular outer condnctor is replaced by an eccentric circular enter

condnctor which has the same “shield factor” as art irregular one at the

extreme of a small wire, and the same formnla is adapted for outer

conductors of different shapes by determining valnes of eccentricity of the

equivalent eccentric coaxial lines. The valWy of the formnfa is confirmed

by numericaf restrfts.

I. INTRODUCTION

Considerable work has been done on the determination of the

characteristic impedance of a coaxial trywnission line consisting

of a circular inner conductor and a noncircular outer conductor

[1]-[9]. Elementary formulas for some shapes have been available

for small ratios of inner and outer conductors. A formula for
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polygonaf outer conductors has been derived by transitioming

between the extremes of a small wire and one near contact [5].

The purpose of this paper is to derive a general and simple

formula for an arbitrarily irregular outer conductor by a sys-

tematic approach. The validity of the formula is confirmed by

some typical examples.

II. THE METHOD

As we know, the interior of a unit circle in the r-plane can be

conformably mapped into the interior of a simply connected

region in the W-plane by an infinite series of the form [10]

(1)
~=1)

where

on=an+ibx. (2)

If 1{1<<1, the first term in (1) is predominant, and a circle with

radius r <<1 in the W-plane will map into an approximate circle

in the f-plane with radius

R=L.
bol

(3)

When the region in the W-plane has severaf axes of symmetry, b.

in (2) is zero. The coefficients a. in (1) can be systematically

determined by such numerical methods as successive approxima-

tions or Melentiev’s method [10]. The coefficient a. also can be

obtained by means of closed analytic functions which confor-

mably map a unit circle in the {-plane into a simply connected

region in the W-plane.

It ii known that an arbitrarily irregular outer conductor, as

shown in Fig. l(a), can be replaced by a concentrically circular

outer conductor with the effective radius

re=.s(r2/rl). rl (4)

where rl is the radius of the circle inscribed in the outer conduc-

tor and rz is the radius of the circular inner conductor. When the

ratio rz /rl A O, r, is given approximately from (3) by

re = Iaolrl (5)

where 1a. I is usually referred to as a shield factor. The character-

istic impedance of the line is given by

ZO = 59.952 in ( r,/r. ). (6)

Generally, it is difficult to solve for s (r2 /rl) in (4) exactly

since the ratio rz /rl increases for an arbitrarily irregular outer

conductor. From the view that the total capacitance of a coaxiaf

transmission line is composed of the parallel connection of the

capacitance of every segment of the boundary, we have the

following conclusion: The function s(rz /rl) monotonically de-

creases as the ratio rz /rl increases.

The above conclusion is obvious from physical considerations

and has been confirmed by examples such as an eccentricaf

coaxial line. This leads us to propose using an eccentrically

circular outer conductor to replace the irregular one shown in

Fig. l(b). The eccentrically circular outer conductor has the same

shield factor as that of an irregular conductor at the extreme of a

small wire and the same radius of the inscribed circle. Thus, the

formula for the determination of the characteristic impedance of

a coaxial transmission line consisting of a circular inner conduc-

tor and an irregular outer conductor is given by

ZO = 59.952 in (G + ~~) (7)
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Fig. 1, The various radii of a cross section
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Fig. 2. Cross-sectional shapes: (a) N= 3, E = 0.12132; (b) N= 4, E =
0.07874; (c) N= 5, E= 0.05260; (d) N -6, E = 0.03772; (e) E = 0.27313; (f)

h/b = 1/2, E = 0.1678; (g) b/a= 1/2, E = 0.26404,

where

(1 2rz D
G=z ~+--(l-E)[l-(l -E)/2]

}
(8a)

2 rl
D=—

1–E”
(8b)

When 2 rz /D ~ O, the effective radius of the eccentric circular

outer conductor is given simply by

rC=l+E. (9)

From the condition that (7) should equal (6) as rz /rl ~ O, we

obtain

E=laol–l. (lo)

III. EXAMPLES

To show the validity of the formula obtained in the preceding

section, we consider some typicaf examples (as shown in Fig, 2).

They have been chosen because accurate approximations have

been given in the literature and are available for comparison.

For each shape, a. in (1) is determined by mtmericaf methods

such as successive approximations, Melentiev’s method, or a

closed analytic function, if it exists. Then, the eccentricities E in

(7) are found from (10) and are given in Fig. 2 for each shape.

The results obtained for regular polygons are compared with

the earlier published results in Table I for different ratios rz /rl.

Table II shows the numerical results obtained for shapes (e)-(g)

shown in Fig. 2. It is seen that the values given here are in good

agreement with those reported in the literature.

IV. CONCLUSION

A method was presented for the approximate equivalence of an

irregular outer conductor. A general formula was given for the

determination of the characteristic impedance of a coaxial line

consisting of an irregular outer conductor and a circular inner

conductor. It was shown by numericaf examples that the formula

yields accurate results in most cases for different ratios of rz /rl.
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TABLE I

Tm CHARACTERISTICIMPEDANCEOFTHEPOLYGONALLmw WITH

CIRCULARINNER CONDUCTOR

A Simplified Large-Signal Simulation of a Lumped

Element TEO Based on a Phase Plane TecWlque

ANDREW MCCOWEN AND

MICHAEL J. HOWES, SENfOR MEMRER, IEEE
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Abstract —Tfte transferred electron device (TED) lumped circuit inter-

action is modeled by a phase plane technique. The results from this

large-signaf simulation are compared to those from a time-domain simtda-

tion based on the electron transport equations and are shown to be in good

agreement. Results from the simulations are used as the design specifica-

tions for a J-band MIC TEO with excellent results indicating the potential

of this CAD technique.--- . .1.-$.2s I -_l..-!!
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I. ‘INTRODUCTION

The microwave performance characteristics and frequency of

operation of a transferred electron device (TED) are dependent

not only on the physical parameters of the TED but also on the

external circuit in which the device is embedded. Several studies

[1]-[3] have attempted to simplify the characterization of this

highly nonlinear device-circuit interaction. Simple analysis yields

some understanding of the TED behavior but has been of little

direct use to the design engineer who has relied mainly on

indirect measurements [4]-[6] of the admittance of a particular

diode at a specific frequency of operation, to optimize perfor-

mance. Only in the case of LSA oscillator design has a simplified

analysis been of any significance. In the LSA mode [7], associated

with oversize n-GaAs samples, space-charge accumulation is

negligible and hence an assumption that a uniform electric-field

profile exists across the device allows the voltage V~ and average

electron current I= to be linked by a piecewise-linear approxima-

tion to the electron drift velocity-electric field (v-E) characteristic

of n-GaAs. This assumption is, however, invalid for short, com-
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mercial TEDs in which-space-charge accumulation is significant.

Large-signal time-domain simulations which are based on

numerical solutions of the electron transport equations, have theACKNOWLEDGMENT
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the geometry and doping of the TED. External circuit elements

and a bias can be incorporated into these numerical schemes

which are run until steady-state oscillations occur when a Fourier

analysis of the voltage and current waveforms yield the frequency

of operation, dynamic device admittance, RF power, and dc to

RF conversion efficiency. Severaf large-signal time domain simu-

lations have been developed [8]–[10] to determine device

performance and operation but have not been compared to

experimental data. Lakshminarayana and I%rtain [6] have, how-

ever, produced reasonable agreement between the results of their

large-signal time-domain simulation [11] and dynamic device

admittance data measured from diodes embedded in Sharpless

Flange mounts. These large-signal time-domain simulations have

the flexibility to allow both device and circuit parameters to be

readily adjusted to optimize oscillator performance. However, the

simulations are not only difficult to establish but require signifi-

cant CPU time for each run and also many runs are required

since the TEDs dynamic admittance, and hence the frequqrcy of

operation cannot be preset.

This paper describes the simplified method of solving the TED

lumped circuit interaction using a phase plane method [12]. These

reading the manuscript and for their suggestions.
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