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equations as
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This is the same as one of the finite-difference equations used
by Taflove and Brodwin in [6] in their implementation of Yee’s
original formulation [7]. The remaining five equations can be
derived in a similar way. The two-dimensional method is a
simplification of the above, requiring modification of (9)-(11).

III. CoMpaRISONS BETWEEN TLM AND FINITE
DIFFERENCES

Great care has to be taken in comparing computer resources
for the TLM method with the finite-difference method since
much more information is available in the former. In the three-
dimensional TLM method operated in the above way, there are
three field quantities available at each shunt and series node.
This, for example, allows the boundary description for TLM to
be twice as fine as for finite differences. In two dimensions, if
boundaries are described only at nodes as in finite differences,
then incident pulses need only be at alternate nodes at any
instant. Thus, an average of two stores for link lines, not four, is
required at each node. Alternatively, if the pulses are incident
simultaneously at all nodes, then boundaries can exist halfway
between nodes as well as at nodes, and the boundary description
is again finer than in finite differences. Also, in assessing arith-
metical load, it should be recognized that implementation of (2)
and (3) requires much less work than a matrix multiplication.

Comparison of the algorithm is interesting, but often there is a
balance between computational efficiency and program or data
complexity. -A much more important difference between TLM
and finite difference is that the former is a physical model using
transmission lines, while the latter is a mathematical model using
differencing. The advantage of TLM is that it provides the
engineer with a conceptual model which can be simulated exactly
on a digital computer. The comparison should include the model-
ing philosophy and not just the algorithm details.

Another advantage of the TLM approach is that it can lead to
models and algorithms which cannot be readily expressed in
terms of the field quantities because the scattering matrix is not
easily factorized as in (3). Examples of this are the asymmetrical
condensed node or punctual node [8], [9] and the symmetrical
condensed node [10], which have the advantage of condensing all
six field quantities to one point in space.

In the author’s view, the TLM method and the finite difference
method complement each other rather than compete with each
other. Each leads to a better understanding of the other.
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Approximate Determination of the Characteristic
Impedance of the Coaxial System Consisting of
an Irregular Outer Conductor and a
Circular Inner Conductor

SHENG-GEN PAN

Abstract — An elementary formula is presented for the determination of
the characteristic impedance of a coaxial transmission line consisting of a
circular inner conductor and an irregular outer conductor. In this approach,
the irregular outer conductor is replaced by an eccentric circular outer
conductor which has the same “shield factor” as an irregular one at the
extreme of a small wire, and the same formula is adapted for outer
conductors of different shapes by determining values of eccentricity of the
equivalent eccentric coaxial lines. The validity of the formula is confirmed
by numerical results.

I INTRODUCTION

Considerable work has been done on the determination of the
characteristic impedance of a coaxial transmission line consisting
of a circular inner conductor and a noncircular outer conductor
[1}-[9]. Elementary formulas for some shapes have been available
for small ratios of inner and outer conductors. A formula for
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polygonal outer conductors has been derived by transitioning
between the extremes of a small wire and one near contact [5].
The purpose of this paper is to derive a general and simple
formula for an arbitrarily irregular outer conductor by a sys-
tematic approach. The validity of the formula is confirmed by
some typical examples.

II. TeeE METHOD
As we know, the interior of a unit circle in the {-plane can be
conformally mapped into the interior of a simply connected
region in the W-plane by an infinite series of the form [10]

W= ¥ o )
n=0

where
)
If |¢] <1, the first term in (1) is predominant, and a circle with

radius r <1 in the W-plane will map into an approximate circle
in the {-plane with radius

a,=a,+ib,.

r

|0‘o|.

(3)

When the region in the W-plane has several axes of symmetry, b,
in (2) is zero. The coefficients «, in (1) can be systematically
determined by such numerical methods as successive approxima-
tions or Melentiev’s method [10]. The coefficient «, also can be
obtained by means of closed analytic functions which confor-
mally map a unit circle in the {-plane into a simply connected
region in the W-plane.

It is known that an arbitrarily irregular outer conductor, as
shown in Fig. 1(a), can be replaced by a concentrically circular
outer conductor with the effective radius

(4)

where r, is the radius of the circle inscribed in the outer conduc-
tor and r, is the radius of the circular inner conductor. When the
ratio », /r, = 0, r, is given approximately from (3) by

’e=s(r2/’1)"1

(5)
where |a,| is usually referred to as a shield factor. The character-
istic impedance of the line is given by

Zy=59.9521n(r,/1,).

1, =|ag|r

(6)

Generally, it is difficult to solve for s(r,/r) in (4) exactly
since the ratio », /r, increases for an arbitrarily irregular outer
conductor. From the view that the total capacitance of a coaxial
transmission line is composed of the parallel connection of the
capacitance of every segment of the boundary, we have the
following conclusion: The function s(r, /) monotonically de-
creases as the ratio », /r; increases.

The above conclusion is obvious from physical considerations
and has been confirmed by examples such as an eccentrical
coaxial line. This leads us to propose using an eccentrically
circular outer conductor to replace the irregular one shown in
Fig. 1(b). The eccentrically circular outer conductor has the same
shield factor as that of an irregular conductor at the extreme of a
small wire and the same radius of the inscribed circle. Thus, the
formula for the determination of the characteristic impedance of
a coaxial transmission line consisting of a circular inner conduc-
tor and an irregular outer conductor is given by

Z,=59.952In (G+VG*-1) (7

(a) (b)

Fig. 1. The various radii of a cross section.
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Fig. 2. Cross-sectional shapes: (a) N=3, E=0.12132; (b) N=4, E=
0.07874; (¢) N=15, E=0.05260; (d) N=6, E=0.03772; (¢) E=0.27313; (f)
h/b=1/2, E=0.1678; (g) b/a=1/2, E=0.26404.

where
1(2n
G=E{3+§(1-E)[l_(l_E)/2]} (8a)
2r,
-5 (8b)

When 2r, /D — 0, the effective radius of the eccentric circular
outer conductor is given simply by

r,=1+E. 9)
From the condition that (7) should equal (6) as r, /7 — 0, we
obtain

E =|ag|-1. (10)

III. EXAMPLES

To show the validity of the formula obtained in the preceding
section, we consider some typical examples (as shown in Fig, 2).
They have been chosen because accurate approximations have
been given in the literature and are available for comparison.

For each shape, a, in (1) is determined by numerical methods
such as successive approximations, Melentiev’s method, or a
closed analytic function, if it exists. Then, the eccentricities £ in
(7) are found from (10) and are given in Fig. 2 for each shape.

The results obtained for regular polygons are compared with
the earlier published results in Table I for different ratios r», /7,.
Table II shows the numerical results obtained for shapes (e)-(g)
shown in Fig. 2. It is seen that the values given here are in good
agreement with those reported in the literature.

IV. ConcLusioNn

A method was presented for the approximate equivalence of an
irregular outer conductor. A general formula was given for the
determination of the characteristic impedance of a coaxial line
consisting of an irregular outer conductor and a circular inner
conductor. It was shown by numerical examples that the formula
yields accurate results in most cases for different ratios of r, /r,.
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TABLEI
THE CHARACTERISTIC IMPEDANCE OF THE POLYGONAL LINE WITH
CircULAR INNER CONDUCTOR ’

shape (a) shape {b}
N=3 N=4
Seshadri Seshadri
present and present and
5/t work Rajatan(6] { Lin[8) work Rajalan[6]| Lin([8] |Riblet[3
9.95 186.46 187,32 185,16 184711 184.42 183777
6.1 144.990 145.74 144.36 142,59 142.58 142,21
8.2 183.32 1d4.98 192.95 101.92 141.18 14@,.66
6.3 78.97 79.74 77.74 76,69 76.84 76.35
2.4 61.66 62.45 60.49 59.42 59.56 59.1¢
8.5 48,20 49.03 47.12 46.060 46.16 45.73 46.09
2.6 37.13 38.61. 36.19 35.09 35.20 34,80 35.15
4.7 27.67 26.57 26.94 25,66 25.89 25,55 25.85
#.8 19,30 20.14 18.94 17.46 17.71 17.58 17.68
@.9 11.47 12.96 11.88 9.97 1¢.15 19.49 10.13
@.95 7.34 8.64 6.20 7.25 6.25
q.99 3.02 6.17
6.998 1,24 5,68 1,87 4.29 | __1.09
shape (c} shape (d)
N=5 N=§
present Seshagir| present Seshagiri
L/ work 1 Lin(8] work 111 Linf8)
9.095 182.67 182.58 182.94 i181.82 181.64 182,38
8.1 141.12 149.92 141.38 140,26 140.401 140.82
8.2 99.52 99.26 99.83 98.71 98,38 99,27
.3 75.26 74.91 75452 74.39 74.04 74,96
g.4 57.98 57,65 58,27 57.14 56.79 57.71
.5 44.58 44.3¢ 44.89 43,75 43,43 44.34
e.6 33.62 33.42 33.97 32,80 32.58 33,41
e.7 24.32 24.24 24.72 23,53 23.34 24,16
a.8 16.22 16.26 16,72 15.47 15.37 16,16
2.9 8.93 9.96 9.66 8.27 8.25 9.18
.94 6.09 6.23 7.85 5.53 5.52 6.49
2.99 2.94 3.94 1.76 3.39
* It should read 23.57
TABLE II
THE CHARACTERISTIC IMPEDANCE OF THE SHAPES (€)—(g)
shape (e) shape (f) shape (g)
parallel plates trough (b=2h) rectangle (a=2b'
present | Wheeler Lin present |Chisholm | present Lin and Pan
2r/b | work 11] a3 work [13 work Chuang[1) [9)
9,05 [ 194.97 188.99 188,89 193,54 193.64 193.64
9.1 | 152,49 152.54 152.53 147.34 147,33 152,97 152,08 | 152,13
8.2 | 110,85 110.98 110,97 105.74 185.74 119.43 110.52 119,56
9.3 86.39 86.63 86.64 81,37 81.36 85,98 86.19 86.15
9.4 68.92 69.29 £9.34 64,81 64.01 68.51 68.89 68,72
9.5 55,21 55.72 55.84 56,48 50.46 54.82 55.39 55.97
8.6 43,80 44.42 44,65 39,32 39,28 43.44 44.21 43,72
9.7 33.86 34.52 34.91 29.72 29.67 33,53 34.48 33.86
9.8 24.75 25.35 25.93 21,13 21.12 24.46 25.52 24.82
7.9 15,68 16.03 16.78 12.91 13.24 15.46 16.44 15.73
9.94 9.49 16.19
6.05 | 1a.49 10.58 11.37 14.32 1111 10,46
2.99 4,49 4.17 4.92 3.83 [ 4,86 4.39
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A Simplified Large-Signal Simulation of a Lumped
Element TEO Based on a Phase Plane Technique

ANDREW MCCOWEN aND
MICHAEL J. HOWES, SENIOR MEMBER, IEEE

Abstract —The transferred electron device (TED) lumped circuit inter-
action is modeled by a phase plane technique. The results from this
large-signal simulation are compared to those from a time-domain simula-
tion based on the electron transport equations and are shown to be in good
agreement. Results from the simulations are used as the design specifica-
tions for a J-band MIC TEOQ with excellent results indicating the potential
of this CAD technigue.

I. INTRODUCTION

The microwave performance characteristics and frequency of
operation of a transferred electron device (TED) are dependent
not only on the physical parameters of the TED but also on the
external circuit in which the device is embedded. Several studies
[1]-[3] have attempted to simplify the characterization of this
highly nonlinear device—circuit interaction. Simple analysis yields
some understanding of the TED behavior but has been of lLttle
direct use to the design engineer who has relied mainly on
indirect measurements [4]-[6] of the admittance of a particular
diode at a specific frequency of operation, to optimize perfor-
mance. Only in the case of LSA oscillator design has a simplified
analysis been of any significance. In the LSA mode [7], associated
with oversize n-GaAs samples, space-charge accumulation is
negligable and hence an assumption that a uniform electric-field
profile exists across the device allows the voltage ¥}, and average
electron current I, to be linked by a piecewise-linear approxima-
tion to the electron drift velocity-electric field (v-E) characteristic
of n-GaAs. This assumption is, however, invalid for short, com-
mercial TED’s in which space-charge accumulation is significant.

Large-signal time-domain simulations which are based on
numerical solutions of the electron transport equations, have the
advantage of assuming only the physical properties of GaAs and
the geometry and doping of the TED. External circuit elements
and a bias can be incorporated into these numerical schemes
which are run until steady-state oscillations occur when a Fourier
analysis of the voltage and current waveforms yield the frequency
of operation, dynamic device admittance, RF power, and dc to
RF conversion efficiency. Several large-signal time domain simu-
lations have been developed [8)]-[10] to determine device
performance and operation but have not been compared to
experimental data. Lakshminarayana and Partain [6] have, how-
ever, produced reasonable agreement between the results of their
large-signal time-domain simulation [11] and dynamic device
admittance data measured from diodes embedded in Sharpless
Flange mounts. These large-signal time-domain simulations have
the flexibility to allow both device and circuit parameters to be
readily adjusted to optimize oscillator performance. However, the
simulations are not only difficult to establish but require signifi-
cant CPU time for each run and also many runs are required
since the TED’s dynamic admittance, and hence the frequency of
operation cannot be preset.

This paper describes the simplified method of solving the TED
lumped circuit interaction using a phase plane method [12]. These
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